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1.0 INTRODUCTION

Appendix A to the Final Report, of the National Aeronautics & Space Administration study,
"Definition of Avionics Concepts for a Heavy Lift Cargo Vehicle" was written by the Space
Systems Avionics Group of General Dynamics. It was performed under contract NAS8-37578
for the Marshall Space Flight Center.

1.1 Scope

This document contains:

• Results of the Main Processor Selection Study

• Description of the Avionics Testbed Demonstration

Most Main Processor Selection material and Demonstration hardware and software
descriptions are contained in this volume. Any material felt to be in conflict with ma.tedal
previously presented in the Final Report or Preliminary Design Document should be viewed
as more current and supersedes the older material.

1.2 Background

The HLCV avionics study was originally meant to focus the development of advanced
avionics systems for various space vehicles for the next ten to fifteen years. Figure 1.2-1
shows the role the HLCV Avionics study was envisioned to play. Scoped to start with an
expendable, Shuttle derived booster, it was to define an optimum progression of upgrades
and transitions until a fully reusable fixed wing booster system was achieved. Not limited to

boosters, the study was to explore second stages, recoverable modules, and the attendant
ground support systems.

Methods for accelerating the application of beneficial new technologies to existing and future
systems were needed. To this end, a Ground Based Testbed was to be defined. Though not
a stated goal, lowering the overall cost per pound of orbiting a payload drove the study to
include the definition of the optimal mix of ground and airborne check out capability.
Autonomous operation of the far term vehicles was felt to be a logical goal.

Shortly after the first review, the customer directed a shift in emphasis to a more detailed
definition of the Ground Based Testbed, (GBT), that would support development of the HLCV
avionic systems. The HLCV reference vehicle avionic systems were defined to the level
required to size the GBT main processor, G&N Extension, and interconnecting busses and
networks.

A target implementation schedule was provided by MSFC in October linking the HLCV GBT
and the Marshall Avionics System Test bed (MAST) efforts (see Figure 1.2-2.). Also defined
were specific functional support levels with dates and projected budget allocations A
candidate site for the GBT/MAST was also provided The third Quarter Review reflected these
inputs and specifically costed the Phase 1 lab configuration. For purposes of this study the
terms MAST and GBT are synonymous.

Page 3 9/29/89, 11:18 AM
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Two follow-on tasks were added to the study in March 1989. They included continuation of
the Main Processor Selection effort and two Ground Based Testbed Conceptual

Demonstrations. Appendix A was added to the Final Report to document the results of these
efforts.

1.2.1 Follow-O.n Study Objectives

As stated in the revised Statement of Work:

The contractor shall perform a detailed evaluation of several host simulation

computer systems for the Avionics test bed. This activity shall include additional

evaluation of the two primary candidates identified during the initial phase of this

study together with the evaluation of two or more alternatives. The contractor shall

support benchmark runs on the candidate systems to verify performance.

Results of this study are reported in Section 2 entitled Main Processor Selection study.

The second major objective was specified as being'

The contractor shall perform a demonstration of the avionics test bed concept
defined in Task 5.4(b) to drive out and refine the test bed hardware and software

requirements. Major objectives are to further identify and demonstrate system

software characteristics which can be implemented to achieve user friendliness and

rapid configuration for the test bed and to demonstrate the ability to rapidly and

efficiently interface with and to close the simulation loop around flight-type

hardware. The demonstration shall be performed at MSFC, utilizing a government

provided simulation computer, three-axis table and launch vehicle dynamics and

environmental models. The contractor shall perform the demo design, integration,

and tests and shall provide the software for simulation monitoring and control

together with Tvc actuator, RCS thruster and avionics software models. The

contractor shall also provide for the duration of this task appropriate GN&C and

interface hardware to support the. evaluation of hardware in the loop simulation

capability. ;.

Results of the demonstrations performed are reported in Section 3.

A subset of the second major objective was identified as:

The contractor shall also identify and demonstrate system software characteristics to

achieve user friendliness and rapid reconfiguration for the test bed.

Its results are reported in Sections 3 & 4.

2.0 GROUND BASED TESTBED MAIN PROCESSOR SELECTION STUDY

The functional requirements for the GBT Main Processor were dominated by several key

issues. The GBT architecture and the philosophy upon which it was based was perhaps the
more dominant of these issues. Figure 2.0-1 shows the target lab functional configuration.

Page 5 10/I 1/89, 11:02 AM
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The processors initial role is to be able to simulate a Phase 1 HLCV avionics system in its
real time operational environment. This must be done with sufficient fidelity that the avionic
system concepts and resulting designs may be accurately evaluated against accepted-
benchmark performance standards. The other end of the Main Processor operational
continuum requires it to control and supervise the avionics hardware testbed and other
resources in providing a "native" operational environment to the Units Under Test (UUT). The
latter requires a parallel processor capable of sharing fast global memory with satellite labs
and processors. The ability to efficiently interface with high speed data bases with a
minimum of loss to overhand is essential.

FIGURE 2.0-1. GROUND BASED TESTBED

Sizing of the Main Processors throughput is driven by the type of simulations it must run in
real time. Figure 2.0-2 shows a typical hardware in the loop simulation of a three string
Phase 1 avionics system. Note the interaction of each functional software module. Figure
2.0-3 quantifies this simulation at between 177.4 to 214.2 Millions instructions per second
(MIPS). Figure 2.0-4 shows the comparative number of instructions for each element of the
simulation. Note the number of instructions required by vehicle Dynamics and Body Bending

modules. Figure 2.0-5 shows the through put requirements of the same simulation elements.
Note the overwhelming requirement of the Actuators. Figure 2.0-6 depicts the parallelization

Page 6 OR'GI,_.|AL PAGE IS
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of the overall simulation showing module assignments of four typical processors• Note the
assignments were based on 5.8 MIPS CPUs. The selected processor uses RIS architecture
and has +20 MIPS capability.
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MODULE INSTRUCTIONS COMP INSTRUCTIONS LOOPS INSTRUCTIONS
PER LOOP RATE (Hz) PER SEC/LOOP PER SEC

RCS 124 500 62K 20 1.24M
Engine (thrust) -:114 500-10K 57K-1.14M 20 1.14M-22.8M

(fuel use) 27 500 13.5K 20 270K
Gravity - 572 500 286K 1 286K
Gravity gradient 181 500 90.5K 1 9 t K
Veh Dynamics 1481 500-10K 740.5K-14.8M 1 741K-14.8M
Atmosphere 52 10-500 520-26K 1 26K
Aero Forces 663 500 331.5K 1 332K

Mass props
(tanks) 63 10-500 630-31.5K 20 13K-630K
(vehicle) 157 10-500 1570-78.5K 23 11K-550K

Fuel Slosh 400 500 200K 1 200K

Body Bending 1000 500 500K 1 500K

Total w/o Actuators and I/O 4.9M-41.7M

I/O 50 500 25K 500 12.5M
Actuators 399 10000" 4M 40 160M

Total 177.4M-214.2M

Note: Higher computation rates are for high fidelity events such as vehicle separation
FIGURE 2.0-3. TYPICAL SIMULATION SOFTWARE THROUGHPUT

(SINGLE VEHICLE, MEDIUM FIDELITY, 3-STRING AUTOPILOT AVIONICS ON HOT BENCH)
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2.1 Main Processor Candidate Screening

Figure 2.1-1 reviews the main criteri_requirements upon which the initial paper study was
conducted. Figure 2.1-2 shows the companies�products evaluated in the paper stud_, from
which the final screeninO candidates were chosen.

Note the diversity of_computers considered. They ranged from general purpose to highly
specialized processors. Figure 2.1-3 reviews this continuum and the associated
applications.

The initial screening for the Main Processing System was based upon the following

requirements:

• Real time operating system

• Global/shared memory support

• High I/O & throughput rates (as directed by the simulation requirements)

• Interface with avionics hardware

• Scaleability with minimal software impact

• Productive development environment

• Minimize re-development of existing software models

• Capable of hosting expert systems

Figure 2.1-4 shows the criteria for final screening and the resulting candidates selected for
the benchmark performance tests.

REAL-TIME SIMULATION REQUIREMENTS

(minimum support for advanced launch vehicle test-beds)
SYSTEM ,ARCHITECTURE
System Architecture
Processing Speed
Memory Structure
Connectivity
Internal Interrupt Service
Operating System

True distributed control & I/O support
160 WS-MIPS: Vhcl dynmcs, On-board Ops, Env'l support
Global memory essential for model-to-model comm.
System extensibility (300 MIPS) & Workstation connectivity
RT process-to-process interrupt serviceability
1-copy UNIX TM environment with Real-Time extensions,
task: assignment, priority & residence locking

INTERFACING CAPABILITY
External I/O Bus
External Interrupt Service
Available Interfaces

Memory map into VME/VXI Bus memory
Minimum 2-level interrupts; servicing within 0.5 ms
Ethernet TCP/IP; MIL-STD-1553B

VENDOR

Company strength
Product Maturity
Current Real-Time Applications

FIGURE 2.1-1.

Established company & track record for parallel experience
System within 6 month of delivery and through beta testing
Support for "special" I/F's, drivers & OS extensions

HIGH PERFORMANCE SYSTEM ASSESSMENT
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CUT 1. REAL-TIME
o*

OPERATING SYSTEM

CUT 2. GLOBAL/SHARED MEMORY SUPPORT

CUT 3. SYSTEM THROUGHPUT 150 MIPS
SYSTEM SCALABLE

CUT 4. COST

Alliant Computer Systems Corp.
BBN Corp. •

Concurrent Computers Corp.
Elxsi Corp.

Flexih "omputer Corp.
juld Inc.

Harris Corp. Computer Systems Division
NCube Corp.

Alliant Computer Systems Corp.
BBN Corp.

Concurrent Computers Corp.
Elxsi Corp.

Flexible Computer Corp.

• :::::::::::::::::::::::::::::::::::::::::::::: _,:::._:::::::::;::':_" ======================================

oncurrent Computers Corp. I

Elxsi Corp.

IC BBN Corp. C°rp 1oncurrent Computers

FIGURE 2.1-4. SELECTION CRITERIA/CANDIDATES

2.2 Main Processor Benchmark Testing

Due to the importance of the Main Processor Selection, a performance evaluation between
the final two candidates was performed. Several tests were run by BBN and Concurrent

Computers. Figure 2.2-1 outlines the tests run. These tests included five industry
benchmarks, a Space Shuttle Main Engine Simulation provided by MSFC and an Ascent
Simulation provided by GDSS. Results of these initial tests are shown in Figure 2.2-2.

To understand the test results one must first understand the processors evaluated and their
attendant architectures. The resulting differences in architectures and data processing

strategies should logically be manifested in the test run. Table 2.2-1 highlights some of the
differences of the units available for testing.
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PERFORMED FOR GDSS BY CANDIDATE VENDORS

DHRYSTONE. (INDUSTRY STANDARD)

- Tests typical Integer system software mix

- 53% assignments, no I/O, 47% array Indexing and Integer math

- Cache based architectures will do very well here

WHETSTONE (INDUSTRY STANDARD)

- 65% Integer Instruction 35% floating point

- Exponential and transcendental functions

LINPACK (INDUSTRY STANDARD)

- Heavy floating point computations

- Matrices and linear operations

• SSME SIMULATION (MSFC) AND MODIFICATIONS

- Provide a measure of performance relative to existing systems at MSFC

ASCENT PHASE SIMULATION (GD/SS) AND MODIFICATIONS

- Demonstrate parallel operation of an existing simulation

- Yield relative before/after time comparisons

FIGURE 2.2-1. TECHNICAL DEMONSTRATION - BENCHMARKS

. EXISTING/AVAILABLE TODAY
BENCHMARK BBN

DRHYSTONE_
WHETSTONE SINGLE
WHETSTONE DOUBLE

LINPACK SINGLE
LINPACK DOUBLE

SSME (UNMODIFIED 1
ASCENT UNMODIFIED

w/2 SIMULTANEOUS COPIES
w/5 SIMULTANEOUS COPIES
w/7 SFIVFULTANEOUSCOPIES

CONCURRENT
2835

[ ] - RelativeSpeedup
( ). Fractionof ReaJ-13rne

.826 MIPS 6.56606 MIPS
.750 MIPS 4.52110 MIPS

.096 MFLOPS 1.3 'I_F_LOPS

.084 MFLOPS ,87 MFLOPS

29hrs.8min {1048.80)
594 sec (5g.4)
601 sec 160.1)
677 sec (67.7)
879 sec (87.9)

1hr.11rain (42.60)

PROJECTED CONFIGURATIONS

BBN CONCURRENT

34000 [12] N/A
15 MIPS [211 ._ 6..56606 MIP$

N/A 4.52110 MIPS

4 MFLOPS [63] 20 MFLOPS [17]
N/A N/A

41min.57,.s,,,ec.{25.17 i 4min.20se¢ {2,60)
14.26 sec {1.426_...
14.42 sec 11.442)
16.25 sec {1.625)

21.01 (2.101)

FIGURE 2.2-2. TECHNICAL DEMONSTRATION - BENCHMARK RESULTS
SINGLE NODE OPERATION
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DefinitionofAvionicsConceptsfdra HeavyLiftCargoVehicle

Concurrenl

Allmemory isglobal ...

Centralizedbus architecture

Limitedto16 MB totaldatamemory

• Memory is segmented into local 4K blocks

• Highly De-centralized architecture

• Memory is limitedto 4 MB or 16 MB per processor

(phase 1 (16 * 4MB), target (15 * 16MB))

• No pipelined instructions

All data fetches on non-local memory must

go through the butterfly switch
TABLE 2.2-1.

• Each processor has a 40stage pipeline and two (2)

8K caches (1 instruction and 1 data)

UNiT DIFFERENCES

The BBN architecture links a large number of parallel processing modules via a proprietary
"Butterfly Switch"• The Concurrent architecture links its processing modules via a more
conventional 256 MBS backplane. BBNs operating system through real-time, is not as
developed as Concurrents. BBNs expandability looks better, but Concurrent has deployed
systems that had throughputs of 150 MIPS. BBNs architecture should permit better parallel
processing speeds and scale up more easily•

SSME PROGRAM

Instructions (MIPS) Estimate
- 4073 Instructions * 50 khz loop time = 203.65 MIPS

100 sec simulation * 203.65 MIPS = 2.0365 x 1010 instructions

• Floating-point operations (FLO) estimate
- 1170 FLO * 50 khz loop time = 58.5 MFLOPS

100 sec simulation * 58.5 MFLOPS = 5.85 x 109 FLO

\
• Tech demo performance

- single-processor
- present processor MIPS and

(based on SSME program)
Actual
Simulation Time

MFLOPS rates

Actual
MIPS rate

(SSME
BBN 29:08:00 = 104,880 see 0.194 MIPS
Concurrent 1:11:00 = 4,260 se¢ 4.781 MIPS

Actual
MFLOPS rate

benchmark)
0.056 MFLOPS
1,373 MFLOPS

FIGURE 2.2-3. TECHNICAL DEMONSTRATIONS - PROJECTIONS

The industry standard benchmarks are primarily aimed at single processor performance
evaluations and are NOT as representative in predicting performance of GBT tasks as are the
two simulation benchmarks• Figure 2•2-3 details the MSFC SSME benchmark and the
comparative results of the candidates. Figure 2.2-4 shows the results of the GDSS provided

• q, °

identical assistance to the candidates in parallelizing the benchmark s_mulat=on programs.
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Figure 2.2-5 and 2.2-6 show the initial approaches suggested to both candidates for the
SSME and Ascent Programs respectively.

DYNAMIC SIMULATION (ASCENT) PROGRAM

• Instructions (MIPS) Estimate
- 10 sec simulation * 13.5 MIPS -- 135 * 106 Instructions

• Floating-point operations (FLO) estimate
. 10 sec simulation * 5.02 MFLOPS = 5.02 x 109 FLO

• Tech demo performance
- single-processor
- present processor MIPS

(based on Dynamic Simulation
Actual
Simulation Time

BBN 594sec
Concurrent

and MFLOPS rates

program)
Actual
MIPS rate

(Dynamic Sim
0.227 MIPS

Actual
MFLOPS rate

benchmark)
0.085 MFLOPS

FIGURE 2.2-4. TECHNICAL DEMONSTRATIONS - PROJECTIONS

PROC #1

S_F1
P_5

PROC #2 PROC #3 PROC #4 PROC #5 PROC #6 PROC #7 PROC #8
1

S_F2 S01 S02 PC P4 T_W15 OWED2 TWl 4 OWOP3
:_W OPO OV_MC RH-O 5 P FP P_OS T W25 DVV_4 E-OP-O T_OPV

:)W_FNBF OW_FPO DW_FPF OW_FN T W24 DW_OS T_FPV

W_01 E-FPO P MFVO POP T_CCV

RHO_4 DW_OPF T_MOV

P 9 T_MFV
P_FTOS

PROC #9 _ROC #1C _RCX_ #11 =ROC #12

P_F1 OW_MOV

|

226 224 226 226 226 226 226 223 221 154 165 163

FLO FLO FLO FLO FLO FLO FLO FLO FLO FLO FLO FLO

II

• All state variable computations and integrations'performed independently

• Computations spread out over 12 processors

• Longest computation path length in an individual processor is 226 FLO (floating point operations)

• Original program (no paratlelization) path length is 1170 FLO

* Predicted execution time for parallel version'

226 / 1170 = 0.193 "unparallelized execution time

' Time for 100 sec simulation on Concurrent (present processor)

4260 sec (actual unparallelized execution time)

=> 0.193 ° 4260 sec = 822 sec (parallel execution time)

• Time for 100 sec simulation on Concurrent (with 20 MFLOP vector processor)

1.373 MFLOP (present processor)
" 822 sec = 56.4 sec

20 MFLOPS (vector processor)

FIGURE 2.2-5. SSME DEMO PROGRAM PARALLELIZATIO_ =

r

Page 1_ 10/i 1/89. i f_04 AM



Final Report,Appendix A Definition of Avionics Conceptsfor a Heavy LiftCargo Vehicle

LOW FREQUENCY TASKS [
-I

! I I I
PROC #1 PROC #2 PROC #3 PROC #4

ACTUATOR #1

(4000 INST,
1300 FLO)

I

|

!
|

I
ACTUATOR #2

(4000 INST,
1300 FLO)

GRAVITY

(570 INST,
149 FLO)

AERO

(600 INST,
170 FLO)

! t I I
PROC #1 PROC #2 PROC #3 PROC #4
ENGINE

GROUP #1

(700 INST,
375 FLO)

ENGINE
GROUP #3

(700 INST,
375 FLO)

ENGINE
GROUP #2

(7OOINST,
375 FLO)

ENGINE
GROUP #4

(700 INST,
375 :FLO)

I 1 I I
I 1 I

PROC #1 PROC #2 PROC #3

VEHICLE
GROUP #3

VEHICLE
GROUP #1

(500 INST,
200 FLO)

VEHICLE
GROUP #2

(500 INST,
200 FLO)

(500 INST,
200 FLO)

Longest computation path length:
5200 instructions (INST), 2875 floating point operations (FLO)

Parallelized predicted execution time:
5200 INST / 13530 TOTAL tNST = 0.384 " unparallelized execution time (based on instructions)

1875 FLO / 5019 TOTAL FLO = 0.374 "unparallelized execution time (based on FLO)

FIGURE 2.2-6. DYNAMIC SIMULATION (ASCENT) DEMO PARALLELIZATION

Based upon these initial test results, projections were made on the future performance of the
candidates. Figure 2.2-7 shows those projections.

At this point, Concurrents performance was clearly demonstrated to be closer to their
advertised capabilities. BBN was hurt in that the unit available for test didn't represent the
greater enhanced capabilities of their 88000 based model about to be released. This
however, didn't mitigate BBNs optimistic claims for their current models performance.
Concurrent also had a mature real-time operating system capable of handling the GBT
requirements now and in the future. BBNs new unit would use an operating system yet
unproven.

At this point BBN effectively dropped out of further testing due to a reorganization of their
local marketing organization.
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DESCRIPTION

MI PS
MFLOPS

I/(3 (MBs)
Bus Speed (MBs)

Memory Capacity (MB)
# of Processors

MIPS
MFLOPS

I/O (MBs)
Bus Speed (MBs)

Memory Capacity (MB)
# of Processors

BBN
2.5.
0.5
2

"4
4
1

PHASE1

CONCURRENT

'7

ADVERTISED

SINGLE, NODE FIGURES
TARGET

64
1,2
40
64

256
1

BBN CONCURRENT
17 6.4
20 41.2

512 40
40 256
16 256
1 1

ACTUAL PERFORMANCE FIGURES
PHASE 1 TARGET

BBN CONCURRENT
40 76 8
8 14.4
2 40
4 64

64 256
16 12

ACTUAL

SINGLE NODE FIGURES

PHASE I

.BBN CON(_URRENT
0.8 6.6

0.96 1,3
2 40
4 64
4 256
1 1

TARGET

8_N CONqURRENT
5 6.6
4 21.3

2 40
4 64
4 256
1 1

ACTUALPERFORMANCEFIGURES

PHASE 1 TARGET
BSN

PHASEI DELTA

BBN CONCURRENT
0.32 103125

0.192 1083333333

FIGURE 2.2-7.

BBN CONCURRENT
272 153.6
320 988.8
512 4O
40 256

256 256
16 24

TARGET DELTA

BBN CONCURRENT
029411765 1.03125

02 0.51699029

CONCURRENT
12.8 79.2

1536 15.6
2 40
4 64

64 256
16 12

TECHNICAL DEMONSTRATIONS

BBN CONCURRENT
80 158.4
64 511.2
2 40
4 64

64 256
16 24

s

PROJECTIONS

Since the selection of the Main Processor was so important in assuring the GBTs success,
two more candidates were given the opportunity to run the performance benchmarks. They
included Harris and E.A.I.. The groundrules remained the same for both new participants.
Some new factors, however, were now being considered in the final selection of vendor for
the Main Processor. These factors centered about the introduction of a new generation of
computers which utilized the Reduced Instruction Set (RISC) CPU chip sets. Since their
introduction was eminent, a new effort was launched to evaluate their added capabilities
against the advantages of using currently available, more mature systems. One factor which
was drastically apparent from Concurrent was a favorable shift in the price to performance
ratio. The original mode[ 3280 Phase 1 unitwith required peripherals cost about $1.4M. The
new RISC unit had twice the performance at about half the price. This permits Phase 1
compliance with Phase 3 throughput requirements.

Two of the remaining candidates were involved in this development of new products using
RISC processors. E.A.I. was investigated since their Analog/Digital hybrid had successfully
been used to model the Shuttle Main Engines and were prime candidates for use in the new .
propulsion system laboratory.

Harris and E.A.I. were both provided the same data for running the benchmarks formally run
by Concurrent and BBN. Harris completed the benchmarks using their Night Hawk 3000
using a single CPU. Table 2.2-2 summarizes the results and compares them with the
Concurrent results using a single CPU.

Figure 2.2-8 compares the current Harris and Concurrent systems.

I,
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MFG R

Harris

Concurrent

SSME

FORTRAN PROGRAM

ASCENT

C-PROGRAM

2 hrs 6 min 6 sec 2 min 55 sec

1 hr 11 min 27 sec 1 rain 42 sec
HARRIS & CONCURRENT SINGLE CPU BENCHMARK RESULTSTABLE 2.2-2.

ISSUE CONCURENT HARRIS

Throughput
Bus Bandwidth (Mbyte / s)
On-Board Memory
Growth Capabilities

Processor Type
S/W Compatibility

Op Sys
PHIGS

6.4 MIPS/CPU (9.4 Var MIPS)
256 sustained 320 max

512 MB (Global Memory)
3280E-12 Processors

RISC (20+MIPS/CPU) MIPS Chip
Proprietary Bit Slice

OS/32 same OS for RT&Development
YES (MC and PSITECH Board)

6 WHETSTONE MIPS/CPU
80
8 MBYTE

MC88000 RISC (15 MIPS)
4 CPU/board
MC68030

Real-Time Unix
Yes

GKS
Xwindows
IGES
FORTRAN
C
Ada

Yes (MC)
Yes (MC)

Yes
Yes
Yes

Yes
Yes

Yes
Yes
Yes

Interrupt Structure
Connectivity
VME Throughput
Cabinets

Open System
PERFORMANCE
FORTRAN Benchmark

1 Processor
2 Processors

C Benchmark

Current Capability
Through-Put Max

4 levels (1024�level�processor+20)
E bus to E bus
6MB/S/VMEB1-FOSB1 10MB/S
3

NO (RTU--Yes)

1:11:27
0:53:32
0:1:42:00

104 MIPS (256)

87 Prioritized
Shared Memory & Interrupts

1

Yes

2:06:06
Not Run
0:02:05

46

FIGURE 2.2-8. CONCURRENT/HARRIS COMPARISON

2.3 E.A.I. Evaluation

A basic problem was encountered in trying to evaluate the E.A.I. SimStar computer. Though
E.A.I. was very responsive in providing basic performance data on their products, they would

not run the benchmarks provided since the benchmarks were designed to evaluate primarily
digital computers and were in a incompatible form. The E.A.I. machines were basically
custom units built from "off-the-shelf" modules. They had successfully run _. real-time
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simulation of the Shuttle SSME which was much higher fidelity than the MSFC benchmarks
used in our evaluation.

After several discussions with the local E.A.I. representatives, we came to an agreer'fient that
the E.A.I's performance'on the SSME program demonstrated their clear superiority in that
type of task. The other requirements which were covered in Figure 2.2-1 could not all be
satisfied by this type-of hybrid computer. The E.A.I., in short, would be an ideal resource
upon which many simulations could be run, but its architecture would limit, if not preclude, it
from functioning successfully as the Main Processor in the GBT.

2.4 Evaluation of the New Harris and Concurrent Computer Systems

Harris and Concurrent had clearly demonstrated that their advertised and measured
performance levels were reasonably close. Their credibility was also enhanced by strong
followings throughout GDSS. With Concurrent and Masscomp merging, their respective
stability was felt to be enhanced. Harris had recently recommitted to a real-time simulation
emphasis with their Night Hawk computers.

The Main Processor selection study at this point, based on current performance and
specifications, would have recommended purchase of the Concurrent 3280 processor.
Since the originally projected purchase date had passed and been delayed nearly a year, a
reevaluation was clearly needed. It would look at the new products available in the new time
frame.

Both Concurrent and Harris were invited to identify their new products available in the
January 1990 time frame. Simple proprietary briefings were given. From these briefings a
revised Phase 1 Main Processor Configuration was developed. Both manufacturers priced a
system which would meet these preliminary requirements.

Due to the proprietary nature of the briefings and the respective designs and schedules
covered, only general results can be covered. Concurrent and Harris had both been looking
at similar RISC chip sets. Concurrent had started a development program several months
before Harris, having already selected a RISC chip set. Both had Real-time operating
systems, Ada compilers and the other software tools required. Concurrent had products
(Masscomp computers) in the field with a real-time UNIX operating system. At the time of the
briefing, Harris had not delivered a multiprocessor (more than 3 CPUs) NightHawk to an
outside customer.

Based on Concurrent's experience with multiprocessor systems, head start on its RISC unit
development and its willingness to commit to beta unit delivery by January 1990, it was felt to
be the best choice. Price also had a very significant influence on the choice, as did a
software development strategy. Concurrent's price for the Phase 1 unit was significantly
lower than Harris. Concurrent also offered a Masscomp unit for software development by
October. It's software was guaranteed to be transportable to the new GoldRush (RISC unit).
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3.0 GBT CONTROL, MONITORING AND DISPLAY SOFTWARE

3.1 Background .,

The Ground Based Testl_d concept rests heavily on its ability to integrate existing and
emerging test laboratory resources into a versatile, cost effective testing facility. Key to this
goal is the Control, Monitoring and Display, (CM&D), software whose architecture was
defined and demonstrated in this study.

3.2 GBT Philosophy

The major points upon which the GBT design philosophy is based are:
a. Reconfigurable Design
b. Real Time
c. Functional Testing
d. Modular Design
e. Flexible
f. Demonstration Oriented

g. User Friendly

The broad based, non project dedicated, generic nature of the GBT is implied in the first
point. The GBT must be an evolving facility, capable of supporting several current and near
term avionic systems. This translates to a firm requirement for rapid reconfigurability. It must
not only be able to switch from one test configuration to another, but it also must have
sufficient capability to support several parallel efforts simultaneously. These efforts will
include everything from basic evaluation of single units in an open loop environment, to full
up, multi-string system simulation.

To be truly useful to a number of projects simultaneously, the GBT must accommodate a
variety of software and hardware configurations. This characteristic encompasses several
traits which include an continuing capability to support several current and near term avionic
systems. Implicit to this capability would be a rapid and easy reconfigurability made possible
by an architecture that presents a broad compatibility to both hardware and software. This
compatibility includes the ability to provide a Real-Time hardware and software interface.
This interface must be capable of duplicating the normal interface the Unit Under Test
encounters in its native system. Only with such an interface can testing and evaluation be
carried out at the required level of fidelity. Just as important is the ability to precisely
manipulate the interface characteristics. Fault insertion and off limit operation can enhance
the thoroughness of testing.

The GBT is modular at all functional levels so, as it develops and the support requirements
change, the lab can add or access the required resources. This translates to the GBT being
able to accommodate any vehicle or system simulation of similar complexity to the then
current defined reference vehicle and systems. Modular design in both the GBTs hardware
and software facilitate an orderly expansion of capability. The foundation of hardware model
benchmarks will be validated against real equipment. Once proven, a combination of real
and simulated hardware models can be utilized to evaluate any number of proposed system
architectures.

Since one of the GBTs primary functions is to provide timely support to new,projects, it must
have the ability to quickly adapt to the specific needs of those projects. This flexibility must be
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a basic consideration in the GBT architecture so it can perform that level of testing or
simulation required in a more cost effective manner than currently available to new projects.

3.3 GBT Software Architecture

GBT lab software and the attendant displays fall into two general categories. The first deals
with lab management and running tests while the second deals with the development of
testing procedures, simulation data, test analysis, output graphics and report generation.The
first type, called Control, Monitoring and Display, (CM&D) software has specific operational
requirements which must be reflected in each menu and its supporting programming. The
second type, called Task Development. (TD), software primarily involves linkage and / or
tailoring of existing program modules and datasets to produce task oriented software. These
TD programs are controlled

3.3.1 Software Architecture Characteristics

3.3.1.1 Real-time Simulations Multi-Processor Based

The software supports real-time, multi-processor based simulations of existing or new
unmanned vehicles including Shuttle-C, Centaur, OMV, STV, and ALS. The software is
structured to take advantage of the multi-processor host computer to meet the simulation
speed requirements. Additionally, the software is structured to allow variable frame-times for
the individual software modules. An example of the multi-processor, variable frame time
structure is shown in figure 3.3.1.1-1.

Instructions per frame

Processor Input
#1 1501

Processor Input

#2 !1501

Processor Input
#3 1501

Processor Input
#40 15O1

Act 1 Eng 1 Vehicle

(400) (141) Dynamics
(1481)

Act 2 ACS 1-10

(400) (1240)

Act3 Eng 2 ACS i0-20
(400) (141) (1240)

Act 40
(400)

Act 1 Eng 1 Vehicle
Dynamics

(400) (141)
(1481)

_tmospher_
Act 2 Gravity

(400) Gray Grad
Aero (1468

Act 3 Eng 2 ACS 10-20
(400) (141) (1240)

(4oo)I
_2 msec (500 Hz)'

Act1 IEngll Vehicle

(4oo)I (141)1 Dynamics(1481)

IMass ProDS
I lO-15

(4oo)I i (11oo)

,ct31Eng21Bo y
(400)I (141)1 Sending(1000)

I Output I

(625) I

! Output I
(625)I I

I Iootp°,lI 16251I
m

I °°,p°,I

• Fastest processing requirements in processor #I
- 41215 instructions / 2 msec => 20.6 MIPS

. Other processor requirements
- Actuator and engines computations

-- 11595 instructions/ 2 msec => 5.8 MIPS / processor
• Low frequency computations (atmosphere, gravity, etc.)

- Performed in any available time "slots"

FIGURE 3.3.1.1-1. TYPICAL PARALLEL-PROCESSING TIMING DIAGRAM (SINGLE VEHICLE,

MEDIUM FIDELITY, 3-STRING AUTOPILOT AVIONICS)
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3.3.1.2 Phases of Flight

The software is structured to allow the capability to simulate any phase of flight including pre-
launch, ascent, on-orbit, re-entry and landing. This capability allows the simulation Of both
individual flight phases "and an integrated mission consisting of multiple flight phases.

3.3.1.3 IntegratiOn of Avionics Hardware Into Real-Time Simulations

The software provides interface routines to drive appropriate I/O hardware. These routines
and associated I/O hardware have the capability of reading from and writing to existing
and/or new avionics hardware in a real-time manner. The avionics hardware to be supported
includes Guidance and Navigation systems, Controls interface, data acquisition system and
power systems.

3.3.1.4 Real Time Simulation of Avionics Hardware

The software modules perform real-time and non-real-time simulations of existing or new
avionics hardware. These modules are in varying levels of fidelity to meet necessary real-
time requirements. The software allows the simulation of multi-string avionics hardware by
the use of multiple software modules and/or actual hardware.

3.3.1.5 Fault Insertion Capabilities

The software allows for the simulation of vehicle/subsystem faults and avionics hardware
faults. Manual, pre-canned and random fault-insertion capabilities are provided.

3.3.1.6 Stand-Alone Avionics Hardware Testing

The software provides the capability to perform stand-alone testing of existing and/or new
avionic hardware. This capability is independent of the main simulation, though individual
simulation routines are used when necessary. The stand-alone testing has an acceptance

test procedure (ATP) type of format, providing stimuli to the hardware and monitoring
appropriate hardware responses. The software is structured to allow for a variety of test
lengths and includes automatic, semi-automatic and manual test capabilities. The semi-
automatic and manual test modes are such that an operator can manually select which
hardware inputs to stimulate and which hardware outputs to monitor. Additionally, the
operator may manually start the execution of any pre-programmed automatic test sequences.

3.3.1.7 User Friendly Interface

The software provides a user-friendly interface based on a tree-structure and utilizing
multiple window displays.

3.3.1.8 Multiple Users

The software provides multiple user capability. This capability allows separate users to
perform simultaneous independent simulations, LRV tests and software development within
the performance constraints of the host computer, bus traffic and I/O constraints and avionics
hardware availability.

°'F
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3.3.2 Menu Architecture

The structure of the multilevel lab configuration software is shown in figures 3.3.2-1, 2 and 3.
Each block on these diagrams represent an individual main program module and menu. The
top or first block is the Main Status and Allocation menu and attendant Control, Monitor and
Display, (CD&M), program. This CD&M menu is used to monitor, control and allocate the
GBT resources.

Hardware Status

and AIIocaUon

I Inte!

ISimul

S=
,/el

|

I De'_" I s,mlI Simulation | J

i
(continued) (continued) (continued)

rated I

tions [

c,ec:I
I

;,,on] IIP°s"O'°_°s'io_'_i

I In.tic-lab
LRU Evaluation Software ' - nnections

(Stand-alone test) Development

l
Select LRU

I p.,,o,_ I
I Accaptancel
i T,,, I LDe_'_i=J

V
(continued) (continue<l)

FIGURE 3.3.2-1. LAB CONFIGURATION SOFTWARE: GBT TARGET AND PHASE 1 DESIGNS -
PROGRAM / MENU STRUCTURE

I I
Avionics Mission

I I

s.,.ct I s.,.ct I
Hardware I Avionics I

Display ISimulati°nsl
Hardware

Statue Me!

Perform ]MM_

Hardware

"Pre-teat'

{Optional)

FIGURE 3.3.2-2.

Define I

[ Smuatlonl

I
I

Select Vehicle_ I

Subsystem Modet_

I

I

[°1Monitonng

and Display

Select+on

!

LAB CONFIGURATION SOFTWARE: GBT TARGET AND PHASE 1

PROGRAM / MENU STRUCTURE (CONT)
,,F

DESIGNS
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FIGURE 3.3.2-3. LAB CONFIGURATION SOFTWARE: GBT TARGET AND PHASE 1 DESIGNS
PROGRAM / MENU STRUCTURE (CONT)

3.3.3 Menu Design

3.3.3.1 Main Status and Allocation Menu

Figure 3.3.3.1-1 shows a conceptual version of this type of menu. The header or top portion
and footer or bottom portion of this and most other control menus are similar. The two most
important areas are the SYSTEM ALERT button/annunciator, in the top left corner and the
SYSTEM MESSAGE field or footer. These areas are dedicated to the transmission of critical

operational or safety related information requiring action by current users of the GBT. The
SYSTEM ALERT will be a predetermined message whose content will indicate the type of
action required by the current users. The type and variety of message selectable will be
appropriate to the functions being controlled at the initiating console.A SYSTEM ALERT
initiation will be a simple two or three step sequence that precludes accidental or
unauthorized activation. Selection of the SYSTEM ALERT button would access a SYSTEM
ALERT menu from which the appropriate message could be selected and sent. The
SYSTEM MESSAGE field may be used for routine status messages. Any Alert type of
message will be accompanied by an audio signal and the SYSTEM ALERT button will flash.

The major portion of the Main Status and Allocation display contains a functional block
diagram of the GBT and its associated resotJrces. In the uper left of this area is the Resource
Allocation chart. This interactive chart is used to log and schedule current jobs in the GBT.
As .each user is identified and the respective test time scheduled, the required resources are
selected. As the resources are identified, their assignment is marked with the users ID
pattern. Two additional detail menus will probably be developed and accessable from this
main menu. The first will be a series of functional block diagrams of the GBT resources in
use by each user. The second type of menu will show the hardware allocation to current
users by GBT functional element. This is the subject of a subsiquent paragraph.
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JOB I USER t Start I DurWion I CPU

SYSTEM MESSAGES/SCRATCH PAD

FIGURE 3.3.3.1-1. CONCEPTUAL VERSION OF MAIN STATUS AND ALLOCATION MENU

3.3.3.2 Hardware Status and Allocation Menu

Figure 3.3.3.2-1 shows the Hardware Status and Allocation Menu which might be used for
the Main Control & Demonstration area of the GBT. This menu identifies all the hardware
resources within this GBT element, its user assignment, current operational status, and the
location of the controlling console. More detailed hardware allocations are possible with this
menu. In this and most other control and allocation menus future use of an imbedded Expert
System would greatly inhanse GBT operation. At the bottom of the menu is a display
selection area which permits access to the other Hardware Status and Allocation menus.

ORIGINAL PAGE IS
OF POOR QUALITY
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SYSTEM

ALERT

GBT Hardware Status & Allocation

Main Control & Demonstration Center

TIME & DATE

28 Sept 89
10:47:39

Job # -

123

1

1

2

3

1

1

7

3

?

Status Control

ON

STBY

STBY

OFF

OFF

STBY

STBY

OFF

O!_ F

OFF

STBY

OFF

Main Control Processor

Graphics Processor 1

Graphics Processor 2

Graphics Processor 3

Graphics Processor 4

Demo Monitor l

Demo Monitor 2

Demo Monitor 3

Demo Monitor 4

Laser Printer 1

Laser Printer 2

Line Printer 1

DISPLAY

System Messages and Alerts
FIGURE 3.3.3.2-1. HARDWARE STATUS AND ALLOCATION MENU

3.3.3.3 Test Control and Monitor Menu

To the user, the typical Test Control and Monitor menu shown in Figure 3.3.3.3-1 may be the
most important. From this menu the user must be provided the real time control and visibility
to assure his test will stay within specified limits and yield the reqired data. He must be able
to quickly select backup menus that provide the level of data required to investigate off
nominal test results. The menu shown follows the convention of grouping the controls on the
left of the display with the Emergency Stop button / annunciator at the top.As with the
SYSTEM ALERT button, this button is activated by a two or three step sequence. Depending
on the functions involved, its activation would iniciate a preplanned, rapid shutdown of the
assigned or affected resources. Its activation would automatically iniciate the appropriate
SYSTEM ALERT. The test control buttons will be mechanized to fit the test requirements.
The Status fields allow following the hardcopy test proceedures and or rerunning portions of
preprogrammed tests. Current software tools permit the buttons and fields to reflect changes
in status or value. Buttons differ from fields primarly in their ability to act as a slector as well
as an annunciator. The display on the right of the menu is a field in which various important
test functions can be graphically monitored. The function displayed can be selected from the
buttons under the display or requested via the message field in the footer.,
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TIME &-.DATE

SYSTEM GBT TEST Control & Monitor Screen 2e septe9
ALERT

Guidance & Navigation System Test - Shuttle C 10:47:39

Altitude/Time

_ _r n 14
I__:_..'_:':: .,..<iii|
__i:!?-,_.:_ 13

12

CONTROL Status 1_lO

Start Pause Time T+106:58 1 2 3 4 5" 6 7 8" ; 10"11 12 ;_" 14 I"_
_" TIME

Reset ( Nominal Displays

System MessaGes and Alerts

FIGURE 3.3.3.3-1. TEST CONTROL AND MONITOR SCREEN

3.3.3.4 Test Selection Menu :,

This general type of menu differs basically from those formerly discussed in that it is used to
link the necessary software modules and datasets to build a test procedure or simulation.
These programs are indicated in the Integrated Simulation and LRU Evaluation blocks in
Figure 3.3.3.4-1..The Test Selection menu shown is the top level selection menu which
grossly classifies the type of task to be performed, The type of avionics system architecture or
element and the operational enviroment. It also permits selection of specific, previously run
tests and or simulations.
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SYSTEM

ALERT GBT TEST MENU
TIME & DATE

28 Sept 89
10:47:39

System Tests

• Shuttle C

O Centaur

O OMV

O STV

Hardware Tests
O IMU

O FCP

0 _NU
O DAS

O RVU

O MDU

O RDU

Mission Phase
O Prelaunch

OTerminal Count

OAscent

O On Orbit

O Rend & Dock

O Deorbit

O Entry

OApproach

OLanding

Test Mode

O System Sire

O Acceptance Test
O Other

Test Library
OShuttle C Int

OShuttle C

O Prop
O ALS Int

O ALS Core

STV Int

System Messages and Alerts
FIGURE 3.3.3.4-1. TEST SELECTION MENU

3.3,4 Simulation Models

All program modules and menus are generic, i.e., the menu structure changes for different
simulations and lab configurations. All elements are data driven either by user defined data
files and/or user commands from the keyboard. The software design goal is to not require
new software modules to be written (coded) as a new simulation is defined.

3.3.4.1 Mission/Vehicle/Environment Models

Simulation software is provided to support avionics testing in simulated ascent, orbital and
controlled reentry phases. The fidelities and frame types of the software modules are
variable and selectable using data files. As a minimum, software modules are provided to
support components shown in figure 3.3.4.1-1.

3.3.4.2 Avionics Simulation Models

Simulation software is provided to functionally simulate avionics hardware. The software
models are structured to allow for the testing of redundancy concepts such as multiple sets of

.,w
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avionics (hardware and/or software simulation), cross-channel communications,
synchronization and shielding. Software modules are provided to support the components
shown in figure 3.3.4.2-1. ..

SIMULATION MODULE DESCRIPTIONS
• 6 DOF DYNAMICS - PROPAGATES 6 DOF DYNAMICS FOR EACH VEHICLE
• MASS PROPERTIES - CALCULATES TIME VARYING VEHICLE MASS PROPERTIES BASED ON FUEL

CONSUMPTION AND VEHICLE STAGING / SEPARATION EVENTS
• AERODYNAMICS - CALCULATES AERODYNAMIC FORCES USING LOWER AND UPPER ATMOSPHERES AND

REENTRY MODELS
• BODY BENDING - CALCULATES VEHICLE BENDING EFFECTS BASED ON VEHICLE STIFFNESS AND/OR

BENDING MODES
• SLOSH- CALCULATES FUEL SLOSH EFFECTS ON VEHICLE ACCELERATIONS AND CG
• MAIN ENGINES - CALCULATES ENGINE THRUST AND FUEL USE BASED ON LOW AND HIGH FIDELITY

ENGINE MODELS
• REACTION CONTROL SYSTEM (RCS) - CALCULATES RCS EFFECTS AND FUEL USE BASED ON LOW AND

HIGH FIDELITY RCS AND RCS FLUIDS MODELS
• ACTUATORS - CALCULATES ACTUATOR POSITIONS BASED ON LOW AND HIGH FIDELITY ELECTRO-

MECHANICAL ACTUATOR MODELS ,,
• THRUST VECTOR CONTROL (TVC) - CALCULATES THRUST VECTOR FORCES BASED ON ENGINE THRUST,

ACTUATOR POSITIONS, AND VEHICLE BENDING EFFECTS
• ENVIRONMENT - CALCULATES ATMOSPHERIC PARAMETERS BASED ON ALTITUDE, SIMULATES

DISTURBANCES AND WIND EFFECTS
• HARDWARE / SOFTWARE INTERFACES- PROVIDES I/O ROUTINES FOR HARDWARE IN THE LOOP, [/O

SIMULATIONS FOR SIMULATED HARDWARE

FIGURE 3.3.4.1-1. PHASE 1 SIMULATION MODELS:

DESCRIPTIONS
• NAVIGATION - SIMULATES INERTIAL SENSORS AND FLIGHT CONTROL PROCESSOR FUNCTIONALITY AND

INTERFACE ELECTRONICS
• VOTING LOGIC - SIMULATES VOTING LOGIC FUNCTIONALITY AND INTERFACE ELECTRONICS
• DATA ACQUISITION - SIMULATES DATA ACQUISITION, REDUCTION AND TRANSMISSION AND INTERFACE

ELECTRON ICS
• ENGINE CONTROLLER - SIMULATES ENGINE CONTROLLER FUNCTIONALITY AND INTERFACE

ELECTRON ICS
• RGU AND AA- SIMULATES RATE GYROS AND ACCELEROMETERS
• CROSS-CHANNEL COMMUNICATIONS - PROVIDES CROSS-CHANNEL DATA LINK BETWEEN AVIONICS

MODULES (HARDWARE AND/OR SOFTWARE MODELS)
• SYNCHRONIZATION AND SKEWING - SYNCHRONIZES WITH HARDWARE AND PROVIDES ARTIFICIAL

SKEWING TO SOFTWARE MODELS
• INSTRUMENTATION - SIMULATES DATA NECESSARY FOR DAS OPERATION

FIGURE 3.3.4.2-1. PHASE 1 SIMULATION MODELS: - AVIONICS SIMULATOR MODELS

3.4. GBT Design Concept Demonstrations

A series of demonstrations was performed to validate Several GBT design concepts. The first
was performed during the Shuttle C Users Group meeting in May. The second was done in
late June and coincided with an Advanced Launch System meeting. The September
demonstration marks the end of the HLCV study contract extention and is the most ambitious
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and significant to date. Due to interest expressed by ALS, a demonstration is being
proposed for the early December 1989 time frame•

3.4.1 May Demonstration
11

Figure 3.4.1-1 is a functional block diagram of the first demonstration performed in the MSFC
Building 4487, Guidance Lab. Though origionally planned as an Open-Loop test of a
candidate Shuttle C Guidance and Control system, the actual demonstration closed the loop
around a prototype Inertial Navigation Unit, (INU). As shown in the diagram, The INU was
mounted on a computer controlled, three axis table. The Shuttle C vehicle dynamic model
and Flight Control processor models resided in the G&N lab computer. Simulation control
and monitoring was the function of the Inertial Navigation System, (INS), Test Station.
Additional visibility was provided by a Graphics Workstation.

In addition to the demonstration in the Guidance Lab, a display of an INU prototype was
provided at the Shuttle-C Engineering Design Unit. The INU was mounted so it could be
manually displaced in any of its sensitive axis and its output was monitored.

INS
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@
Strap I

Down

Processor

w

i

i

!

;

I
Table Controller

t Table

b_eData

Graphlcs "_

orkstatlon|

ale DlsplayJ

Commands

INS TEST STATrON

__ Coordinate

t Transformations

I

Test Commands I I

INS TEST COMMAND

& CONTROL

G&N Lab

Computer I Traiec'°ry I

Coordinate _ Vehicle
T'ransformat ons Dynamics

1

• Cmd

• Initialize

(Roll. Pllch, Az)

( Rale.a )

(Acceteratlon_

(Let, long)

Actual

Desired T IRates

Error _ _

._ CunlroI JLaws

FIGURE 3.4.1ol MAY D'EMONSTRATION

3.4.2 June Demonstration

The June G&N demonstration was similiar to Mays except the dynamics model of the ALS
was used with the ALS Flight Control processor model. These models were resident in the
INS Test Station for this simulation. Two other demonstrations were also presented showing
Adaptive Guidance Navigation and Control applications for ALS and an Expert System
tanking proceedure.
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3.4.3 September Demonstration

Several additional elements of the GBT were demonstrated in September. These included
several hardware and software products. Supplementing the prototype INU was a seperate
Flight Computer which Contained its flight software coded in Ada. A brassboard Remote
Voting Unit, (RVU) was used to process Trust Vector Control, (TVC), commands from the
Flight Computer. The resulting analog output was interfaced with an actuator model residing
now in the Compaq workstation. A small Electro-Mechanical Actuator was also driven by
workstation converted TVC commands.

The GBTs name, having gone through several changes, is now the AVIONICS
PRODUCTIVITY CENTER, (APC). Figure 3.4.3-i is the MSFC chart showing the updated
APC functions. New among the articles under test are Controllers and Pilot Station.

AVIONICS PRODUCTIVITY CENTER (APC)

ENVIRONMENTAL
MODELS

VEHICLE
MODELS
- STAGES
- AERO
- ORBITAL

° INTERFACE TO
EXISTING
SIM LABS

ALS
SSME
ACS
AFE
POWER
ITF

° HOSC
° KLCS LPS

APC

FUNCTIONAL DIAGRAM

I APC OPERATIONS 1

CONTROL CENTER

° DISPLAYS
° CONTROLS
° DATA ACQUISITION

_ SIM CONFIGURATION

CONTROLLER

° MODEL - VEHICLE ENVIRONMENT
- NEW
- USE LIBRARY MODEL

° AVIONICS
- MODEL

• NEW
• USE LIBRARY
• COMBINATION

- HARDWARE
• DISCRETE
• SUBSYSTEMS

PHYSICAL STIMULUS F
POINTING &

VALUE TABLES
SUPPORT ISYSTEMS

I II I t

ARTICLE UNDER
TEST

SENSORS

_ SMART
_ SIMPLEX

"-!--'I
ESE

- AIRBORNE

, - GROUND

EFFECTORS

J

POINTING
SYSTEMS

CONTROLLERS
- STANDARD
- NEW

NETWORKS
- STANDARD
- SPECIAL

COMMAND & TELE
- CONFIG

PILOT STATION

FIGURE 3.4.3-1 APC FUNCTIONAL DIAGRAM
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3.4.3.1 Demonstration Objectives

Figure 3.4.3.1-1 is a functional block diagram of the September demonstration. There were
two general objectives / tasks sited for this third demonstration. Control Dynamics w_.s to
provide and demonstrate.a new modular vehicle dynamics model. They were to be able to
demonstrate that model using a model of the Rockwell Shuttle avionics to close the loop.
General Dynamics was to then integrate into the simulation the following hardware and
software:

• An Ada coded Flight Computer capable of controlling a Shuttle C during ascent

• A Remote Voting Unit capable of processing TVC commands and data

• A prototype Electro-Mechanical Actuator controlled by TVC commands
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FIGURE 3.4.3.1-1 SEPTEMBER DEMONSTRATION

Aditionally, a demonstration of the user friendly APC control and program development
software was requested.

o,
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3.4.3.2 Modular Vehicle Dynamics Software

The APC software is required to be modular and dataset driven. The Control Dynamics,
(CDy) vehicle dynamics software, developed for September, was to demonstrate these
charactoristics. During the demonstration briefing, CDy showed the modules selected for the
program in use plus others that could be added later. Because of the limited capacity of the
current G&N Lab computer, modules such as body bending and propellent slosh were not
included. Winds and aerodynamics were included in the demonstrated vehicle dynamic
model.

3.4.3.3 Shuttle C, Hardware in the Loop Demonstration.

The CDy vehicle dynamics program resided in the G&N Honeywell XPS100 computer. It is
controlled and monitored via the Sun graphics workstation. During the two September
demonstrations software only and hardware in the approximately the same ascent profiles
were displayed on the workstation making a direct comparison possible.

The Shuttle C flight control software resided in the Motorola 6830 VME modular oomputer.
The ascent profile is determined and controlled by the flight control software. Vehicle angular
position and rates were provided by the G&N lab 3-axis table. The MAPS sensed these
angular displacements and transmitted this rate and attitude data over the 1553 vehicle bus
to the Flight Computer. TVC commands are sent from the Flight Computer to the RVU, via
the 1553 vehicle bus, where they are processed into the individual TVC channel command
signals. Actuator Position is fed back to the Flight Computer and to the G&N lab computer.
This actuator position data is factored into the vehicle dynamics calculations and appropriate
commands are sent to the 3-axis table, thus closing the loop. The remaining avionics system
hardware functions are simulated in the COMPAQ workstation.

A TVC Electro-Mechanical Actuator was driven by the Compaq workstation using the#1
Shuttle C Main Engine pitch channel commands. This small ICBM EMA and its controller
were provided by Allied Signal and represent the typical interface requirements which must
be accommodated by an avionics system. The RVU will have the capability to interface
directly with the EMA controller in subsequent demonstrations via its analog input/output
modules.

3.4.4 Proposed December Demonstration

TheDecember Demonstration, like those that preceeded it, will be a proof of concept
demonstration that combines the APC functions previously shown with new key functional
elements. The major elements to be demonstrated include high speed lab to lab data
communications and integration of the new Propulsion System Lab resources into a closed
loop ALS system simulation. Figure 3.4.4-1 is a functional block diagram of the December
demonstration.

3.4.4.1 Lab to Lab Data Communications

Realizing the APC goal of linking existing and future lab resources with a central integraton
lab rests heavly on high speed data bus technology. It relies on the data networks ability to
accomodate the growing bus traffic levels associated with real time operation. Pronet 80 was
chosen by MSFC to be the initial high speed data bus network for lab to lab data
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communications. The December demonstration will utilize Pronet 80 to link the new Simstar
computer in building 4476 to the balance of the equipment in building 4487s G&N Lab. The
fiber optic cable used to link the two facilities should exceed 5_0_0feet thus providing a good
initial example of transmission capabilities at that moderate range. Successful integration of
the software drivers and "communication overheads into lab operations software will also be
shown.

3.4.4.2 Integration of New Propulsion Lab Resources.

The new Simstar computers capability to provide a real time, high fidelity simulation of the
current Shuttle Main engine will be integrated into the GDSS ALS avionics system
simulation. Throttle commands will be generated by the Flight Computer and sent to the RVU
via the 1553 vehicle bus The throttle command will be linked to the Engine Simulation over
the Pronet 80 link to the Propulsion Lab. Engine thrust level and throttle position will be fed
back to the G&N lab over the same Pronet 80 link. The Engine thrust level will be summed
with the other engine thrust vectors being calculated in the vehicle dynamics model. A pair of
high fidelity TVC actuator models for the same engine will hopefully be avalable so the thrust
vector may be completed at the same level of fidelity. If this is realized, the TVC aCtuator
commands and positions could also be sent over the Pronet 80 link.
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FIGURE 3.4.4-1 PROPOSED DECEMBER DEMONSTRATION
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